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ABSTRACT:  

A new mathematical model of time-fractional two-temperature transient heat and moisture diffusion that obey Fourier 

and Fick's laws has been constructed in the context of the hygrothermoelastic theory. This paper provides a 

connection between the concepts of hygrothermoelasticity with fractional order, one-temperature and two-temperature 

in the unsteady diffusion process having a Dufour and Soret effect. The governing equations consist of linearly 

uncoupled partial differential equations applied to composite material hollow circular cylinders subjected to 

hygrothermal loading. The solution to the problem is first obtained in the Laplace transform domain. Furthermore, a 

complex inversion transform formula based on a Fourier expansion is used to get the numerical solutions of the 

coupled diffusion equations. The graph depicts the numerical results for the graphite fibre-reinforced epoxy resin 

composition of T300/5208. 

 

Keywords: - Hygrothermoelastic, two-temperature theory, integral transform approach, fractional calculus, 

numerical results. 

 

INTRODUCTION : 

The coupling of humidity and temperature in the 

diffusion process has a Dufour effect and the 

Soret effect. The former is the effect of water 

concentration (humidity) on the thermal 

diffusion process, and the latter is the effect of 

temperature distribution on humidity diffusion. 

However, due to the equation's simplicity, most 

of the coupled equations are derived from the 

chemical potential, Fourier's heat conduction 

equation and Fick's diffusion equation are 

adopted. In most of the literature, for simplicity, 

it is assumed that moisture and temperature 

variations are confined within a small range. All 

material properties are independent of both the 

temperature and the moisture and are coupled. 

However, the elastic deformation due to the 

humidity and the temperature is within a linear 

elastic range. The effects of moisture and 

temperature on stresses and displacements in 

composite materials have risen in popularity. 

Henry [1] incorporates a diffusion principle that 

considers the relationship between temperature 

and moisture. Hartranft and Sih [2] expanded on 

the phenomenological claims that contributed to 

coupled equations governing the simultaneous 

diffusion of moisture and heat. Although the 

coefficients were applied to the fundamental 

thermodynamic properties, both physical models 

resulted in the same differential equations. It 

was also noted that when the moisture diffusion 

coefficient was kept temperature-dependent for 

symmetric boundary conditions, that produced 

no bending [3], whereas when the skew-

symmetric boundary condition was taken as 

bending occurred [4]. Sih et al. presented 

analytical solutions for the coupled heat and 

moisture diffusion problems in the case of a 
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plate [5-7], a strip [8], a spherical cavity [9] and 

a circular cavity [10]. One of the highly cited 

literature reviews on hygrothermoelasticity was 

considered by Sih et al. [11] in their book. Chang 

et al. found analytical solutions for hygrothermal 

stresses in a hollow cylinder [12], a solid 

cylinder [13], and a double-layer annular 

cylinder [14] subjected to hygrothermal heating 

using the decoupling approach. Sugano et al. 

achieved an analytical solution for the 

hygrothermal stresses in a hollow cylinder [15] 

and a functionally graded material plate [16] 

subjected to a non-axisymmetric hygrothermal 

environment by employing a similar technique. 

Chiba derived an analytical solution for one-way 

coupled transient heat and moisture in a 

double-layered plate [17] and applied it to the 

hygrothermoelastic problem of a functionally 

graded material whose physical properties vary 

along the thickness direction [18]. 

In the context of Carrera's Unified Formulation 

(CUF), Brischetto [19] analyzed the hygrothermal 

loading effects in the bending of multilayered 

composite plates, enabling classical models to be 

obtained. Ishihara [20] developed a system of 

nonlinear coupling diffusion equations for an 

infinite strip in porous media exposed to heat 

and moisture. The static behaviour of a 

functionally graded magnetoelectroelastic hollow 

sphere resting on a Winkler elastic foundation 

and subjected to hygrothermal stress was 

determined by Saadatfar and Aghaie-Khafri [21]. 

Zenkour [22] obtained the analytical solution to 

describe the hygrothermal responses in 

inhomogeneous piezoelectric hollow cylinders 

subjected to both mechanical load and electric 

potential. Zhao et al. [23] have used differential 

operator theory and the superposition principle 

to extract the general steady-state solution for 

three-dimensional hygrothermoelastic media 

with the potential theory's aid approach. 

Benkhedda et al. [24] developed an approximate 

model to estimate hygrothermoelastic stress in 

composite laminated plates during moisture 

desorption while accounting for changes in 

mechanical properties caused by temperature 

and moisture variations. Most of the previously 

published articles exposed composite structures' 

static and dynamic properties in the 

hygrothermal environment. Neither has looked 

at the theoretical context for coupling classical 

Fourier's and Fick's laws to establish a new two-

temperature hygrothermoelastic diffusion 

principle for a non-simple rigid substance. 

Neither has looked at the theoretical context for 

coupling classical Fourier's and Fick's laws to 

establish a new two-temperature 

hygrothermoelastic diffusion principle for a non-

simple rigid substance. The author, in their 

paper, proposed a system of linearly coupled 

partial differential equations for the thermal and 

moisture diffusion for the case of a non-simple 

medium [25]. 

Fractional or non-integer order calculus has 

recently been applied in physics, geology, 

chemistry, rheology, architecture, 

bioengineering, robotics, and other areas as a 

natural extension of classical differential and 

integral calculus. Many scientists have looked at 

fractional order differential equations as a way 

to explain anomalous diffusion in complex 

structures, like amorphous, porous, random, 

and disordered materials, fractal polymers, 

glasses, dielectrics and semiconductors, and so 

on [26]. Chaves [27] proposed a fractional-

derivatives diffusion equation that generates the 

Lévy statistics based on a proposed 

generalization of Fick's law. Gorenflo et al. [28] 

obtained the time-fractional diffusion equation 

from the standard diffusion equation by 

replacing the first-order time derivative with a 

fractional derivative of order β∈(0,1). Povstenko 

[29-32] proposed a series of academic papers on 

the time-fractional diffusion equation using 

fractional calculus methods, analogous to 

fractional Fick's principle. Very recently, Zhang 
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[33-36] formulated a few coupled 

hygrothermoelasticity manuscripts within the 

fractional calculus framework to obtain closed-

form expressions for temperature, moisture, and 

stresses. As far as the authors are aware, no 

analytical investigations that dealt with 

equations for the coupled model with the time-

fractional two-temperature hygrothermal model 

were left open for further research. Similarly, 

even from the perspective of numerical analysis, 

the behaviour of the transient hygrothermal 

stresses in non-simple composite bodies has not 

yet been reported. 

This article aims to describe the effects of time-

fractional two-dimensional transient coupled 

heat and moisture diffusion on the elastic 

stresses in an infinitely long hollow cylinder 

under hygrothermal loadings. This article aims 

to describe the effects of time-fractional two-

dimensional transient coupled heat and 

moisture diffusion on the elastic stresses in an 

infinitely long hollow cylinder under 

hygrothermal loadings. The classical Fick's law 

and Fourier heat conduction principle compare 

temperature and moisture fields, deformation, 

and stresses for various fractional orders. 

Time-fractional two-temperature 

hygrothermoelastic theory 

Henry [1] proposed an alternative microscopic 

approach as the first approximation for the 

variation of moisture and temperature as 

constant+ ,M C T    where and are 

material constants, C is the mass of moisture, 

and T is the temperature. Then the amount of 

moisture in composite per unit mass of solid, m, 

can be expressed as ,m C M    with   

as the volume fraction of the voids and   as the 

density of the material [2]. Due to the presence 

of liquid and vapour, the moisture and heat 

transfer obey the following conservation of mass 

and energy as ( / ) /mq m t     and 

( ) / ( ) /h vq M t C T t       .  

Eliminating M, one obtains a system of 

simultaneous equations for moisture and 

thermal diffusion 

2
c

T C
T

t t


 
  

 
D

                                  

(1) 

2
c

C T
D C

t t


 
  

                        

(2) 

where c  
is the adiabatic coefficient, c  is an 

isothermal coefficient, D  is the thermal 

diffusion coefficient under the state of constant 

vapour concentration, D is vapour diffusion 

coefficient under isothermal condition, and it is 

represented as [2,15] 

(1 ) , (1 )c c h c c mD D D      D
                  

(3) 

with hD representing the coefficients of diffusion 

of heat and mD stands for the diffusion of 

moisture, respectively. 

Now, introducing the two temperatures models 

(2TT) are related by [37-43]  

2 , 0T b T b    
                                  

(4) 

in which   is the change in temperature or 

thermodynamic temperature, T  is the 

conductive temperature, 
2  denotes the 

Laplace operator and b  is the temperature 

discrepancy factor or parameter of the two-

temperature model. In the limiting case, as 

0,b  T   and the one-temperature models 

(1TT), are recovered. 

The present problem in a non-simple medium 

can be written as 

21 c
b T C

T
t t t




   
    

   
D

                       

(5) 

2
c

C T
D C

t t


 
  

                                   

(6) 

in which thermal diffusivity is taken as 

/ vC   ,   is the thermal conductivity of 

the material,   is the density, vC  is the 

calorific capacity, respectively. 
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Following [27-36], it is assumed that heat and 

moisture obey time-fractional Fourier and Fick's 

laws in which the matter flux has the power-law 

time-nonlocal kernel describing "long-tale" 

memory. Thus, the heat flux vector and moisture 

flux vector take the following form [33] as 

1( ) ( ) , 0 1
( )

0
( )

2( ) ( ) , 1 2
( 1)

0

1( ) ( ) , 0 1
( )

0
( )

2( ) ( ) , 1 2
( 1)

0

t
t T d

t
q t

h t
t T d

t

tD
t C d

t
q tm

tD
t C d

t

   


   


   


   


       
 

 
         


       
 

 
         


D

D

 

in which ,   represents the fractional order of 

a Caputo fractional derivative with respect to 

time t, and ( )  is the Gamma function. 

 

Thus, we get a system of linearly coupled partial 

differential equations as 

21 ,0 2c
b T C

T
t t t

 

 
 



   
      

   
D

                       

(7) 

2 ,0 2c
C T

D C
t t

 

 
 

 
    

                                

(8) 

in which ( / )t   and ( / )t    is the 

Caputo fractional derivative, and Caputo 

fractional derivative is written as [44] 

1 ( )1( ) , 1
( )( ) 0

( )
,

nt d fnt d n n
nnd f t d

ndt d f
n

ndt

  
  







     

 
 





(9) 

As a particular case of hygrothermoelasticity 

theory,  

(i) Taking 0,b  1   and 1   in Eqs. 

(7)-(8), the equations of the one-temperature 

model (1TT) can be found as obtained by Sugano 

and Chuuman [15]. 

(ii) Taking 0b  in Eqs. (7)-(8), the 

equations for the coupled model with different 

fractional orders can be obtained as suggested 

by Zhang and Li [33]. 

(iii) Taking 0b  and  in Eqs. (7)-(8), 

the equations for the coupled model with equal 

fractional orders can be achieved as proposed by 

Zhang and Li [33]. 

Formulation of the problem 

Consider an infinitely long hollow circular 

cylinder with an inner radius ar r  and outer 

radius br r , which is subjected to 

nonaxisymmetric hygrothermal loading, that is,

( , )a aT C at the curved inner surface and 

( , )b bT C  at the curved outer surface, as shown 

in Figure 1.  

The system of linearly coupled equations for the 

composite material hollow circular cylinder can 

be taken as Eqs. (7) and (8), subject to boundary 

conditions 

0 0 0 0
0 0

, , 0, 0,

( ), ( ), ( ), ( )
a a b b

i it t
t t

a a a a b b b br r r r r r r r

T C
T T C C T C

t t

T T f C C g T T f C C g

 

   

   
 

   

 
     

 

   

    

(10) 

where ( , , )T r t  and ( , , )C r t  are the 

temperature and moisture, iT  and iC  are the 

reference temperature and moisture at the initial 

state, and 

2 21 12
2 2 2r rr r 

  
   

 
. 

The components of strain associated with plane-

strain, compatibility conditions of strain, 

equilibrium equations, stress-strain components 

disregarding the body forces (i.e. 0)rF F  , 

and components of stress are given by 
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2

2

1
(1 ) (1 ) ,

1

1
(1 ) (1 ) ,

1

1
,

rr rr t t

rr t t

r

T C
E

T C
E

E



 

 

 
      



 
      




 

  
      

 

  
      

 




                   

(11) 

2 22
2

2 2

( )
2 2 0,rrr rr r

r r r
r r rr

     



   
    

                           

(12) 

21 1
0, 0,r rr r rrr

r r r r r r

         

 

   
     

                

(13) 

2 2

2 2 2

1 1 1
, , .rr r

r r r rr r
 

   
  



     
      

                         

(14) 

It is easily found that the equilibrium equations 

(13) are automatically satisfied by the 

introduction of the thermal stress function

( , , )r t  . Since the solution of the problem 

should satisfy the stress-strain compatibility 

equation (11), substitution of components of 

stress (14) into the compatibility equation (12) 

and using Eq. (11), yields 

2 2 2 2( ).
1

t t
E

T C  


      
                                    

(15) 

The set of equations (4) to (15) constitutes the 

mathematical hygrothermoelastic formulation 

within a hollow circular cylinder at any instant. 

Solution  

Introducing the following dimensionless 

parameters for ease of analysis 

2 1/ 2 1/

2 1/ 2 1/

/ , ( ) , ( ) , ( ) / ,

( ) / , ( ) / , [( ) ( / ) ]

a a a i i

i i i c i a a

r r r t r t b r b T T

T T T T C C C C K D r r

 

  

 



       

     

D / D /

/ D

        

(16) 

Using these non-dimensional variables, Eqs. (7), 

(8) and (10) take the form 

2 C T
K C

t t

 

 

  
   

                             

(17) 

21 c
b T C

T
t t t

 

 




     
                        

(18) 

subject to boundary conditions 

0 0 0 0
0 0

1 1

0, 0,

( ), ( ), ( ), ( )

t t
t t

a a a a b b b br r r r

T C
T C T C

t t

T T f C C g T T f C C g

 

 
   

    
  

      

  
        

  

          

    

(19) 

where the primes stand for dimensionless 

quantities, dimensionless radius as /r rb a   

and 

2 21 12
2 2 2r rr r 

  
   

   

. 

For convenience, the primes will be dropped 

from here on. It was here dropping the primes 

for convenience. 

The following property of the Laplace transform 

of the Caputo derivative operator [44] can be 

used to derive the solutions of Eqs. (17)-(19) 

1
1

0

( ) (0)
( ) , 1 ,

mn
m

m
m

f t f
p f p p n m

t t


 





  



   
     

   

L

           

(20) 

where p is the Laplace transform parameter and

f  is the Laplace transform of f. 

 

Applying Laplace transform [45] defined as 

0( ) exp[ ] ( )f p pt f t dt  to both sides of 

Eqs. (17) and(18), and taking the initial 

conditions (19), one obtains 

2 * * *( )K C p C T   ,                          (21) 

2 * * *1 ( )c
b

p T p T C 


 
    

 

,                   (22) 

* *

0 0

* * * *

1 1

0,

( ), ( ), ( ), ( )a a a a b b b b
r r r r

T C

T T f C C g T T f C C g

 

 
   

 

   

 

   

(23) 

 

Applying the finite Fourier sine transform [45] 

defined as 0( ) ( )sin( / )f f d
       to 

both sides of Eqs. (21) and (22), and taking the 

boundary conditions (23), one yield 

2 * * *( )K C p C T   ,                              (24) 
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2 * * *1 ( )c
b

p T p T C 


 
    

 
,                                         

(25) 

* * * *

1 1
( ), ( ), ( ), ( ),a a a a b b b b

r r r r
T T f C C g T T f C C g

 
   

   
   

      

(26) 

            

2 2 21 12
2 2 2r rr r

 



 
   

                                            

(27) 

Introducing the finite Hankel integral transform 

[45] and its inversion theorem as 

2 22

2 2

( ) ( ) ( ) , ,

( ) ( ) ( )
( )

2 ( ) ( )

n i n i

i n i n i n i

n n i n i

bf r f r B r dr b aa

f B r J b
f r

J a J b

 

   

 

 





                                  

(28) 

where n be the transform parameter and kernel 

for the finite transform defined by  

( ) ( ) ( ) ( ) ( )n i n i n i n i n iB r J r Y a Y r J a     
                                

(29) 

with 
i  are the positive roots of the 

characteristic equation ( ) 0n iB b 
 
and ( )nY x  

is the Bessel function of the second kind of order 

n. 

 

Now perform the finite Hankel transform to Eq. 

(24) and (25), using the boundary conditions 

(26), leading to 

* * *2
2( ) ( ),iK C A p C T   

                                   

(30) 

                               

* * *2
3 1( ) ( ),i cA T A p T C    

                                

(31) 

where  

1

2

3

( )2
( ) ( ) ,

( )

( )2
( ) ( ) ,

( )

1 , / .

n i
b b a a

n i

n i
b b a a

n i

J a
A T f T f

J b

J a
A C g C g

J b

b
A p n


 

 


 

 

 


  
   

   

  
   

   

  

 

Now eliminating 
*

T from the Eqs. (30) and (31), 

one obtains 

2*
2 3 3 1

2 2
3

( )

( )( )

i

i i c

KA A p p A A
C

K p A p p p

 

   



  

 


  

.                            

(32) 

Substituting Eq. (32) into Eq. (30), one gets 

2 2*
2 3 3 1 2

2 2
3

( ) ( )

( )( )

i i

i i c

K p KA A p p A A KA
T

p K p A p p p p

  

     

 

  

   
  

    
.           (33) 

Applying the inversion theorems of 

transformation on Eqs.(29) and (33), and 

obtaining the moisture and temperature change 

in the Laplace domain below 

2
* 2 3 3 1

4 2 2
1 1 3

( )
,

( )( )

i

i i i c

KA A p p A A
C A

K p A p p p

 

   




  

 

 

   
    

    

                    

(34) 

2
* 2 2 3 3 14

22 2
1 1 3

( )
( ) ,

( )( )

i
i

i i i c

KA A p p A AA
T K p KA

p K p A p p p

 


    





  

 

 

    
      

      

   

(35) 

where 

2 2

4 2 2

( ) ( )
sin( )

( ) ( )

i n i n i

n i n i

B r J b
A n

J a J b

   


 



. 

We now introduce the non-dimensional variable  

(1 ) / a iEr T     , 

(1 ) / ( , , )ij ij t iE T i j r       
                 

(36) 

in dimensionless form for ease of analysis (for 

convenience, we drop the primes from here on) 

and taking the Laplace integral transforms on 

both sides of Eqs. (14) and (15) as follows 

2 2

2 2 2

1 1 1
, , .rr r

r r r rr r
 

   
  



   
  

     
      

      

            

(37) 

2 2 2 2( ),t cT C          
                             

(38) 

Assuming stress function  which satisfies Eq. 

(38) as 
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2 24

1 1

2
2 3 3 1

22 2
3

[ ( ) ]
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( )( )
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t
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A
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
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     




  

 


 


    



   
   

                        

(39) 

Now using Eqs. (39) in (14), one obtains the 

expressions for stresses as 

2 25

1 1

2
2 3 3 1

22 2
3
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,
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(40) 

2 26
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(41) 

2 27
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(42) 

where 

2 2

5 2 2

[ ( ) ( ) ( ) ( )] ( )
sin( )

( ) ( )

i n i n i n i n i n i
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

, 
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

, 

2 2

7 2 2
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( ) ( )

i n i n i n i n i n i

n i n i

n J r Y a Y r J a J b
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J a J b
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

 

 




. 

The numerical inversion of the Laplace 

transforms 

Eqs. (34), (35), and (40)-(42) provide the 

expressions for moisture, temperature and 

hygrothermal stress in the Laplace domain. It is 

difficult to find the analytical inverse Laplace's 

transform of the complicated solutions in 

Laplace's transform domain. In order to 

determine these in the physical domain, we 

adopt a numerical inversion method based on a 

Fourier series expansion of functions performed 

by Honig and Hirdes [46]. In this method, the 

inverse ( )f t  of the Laplace transform ( )f s is 

approximated by the relation 

1
( ) ( ) Re exp ,0 1

21 1 11

st Ne ik ik
f t f s f s t t

t t tk

     
        

     

            

(43) 

where N is a sufficiently larger integer 

representing the number of terms in the 

truncated Fourier series, chosen such that 

( ) Re exp ,1
1 1

iN iN tstf t e f s
t t

 


    
      

     

 

in which 1  is a prescribed small positive value 

that corresponds to the degree of accuracy to be 

achieved. 

Numerical Results, Discussion and Remarks 

We consider the composite hollow cylinder was 

prepared from Thornel (Union Carbide) T300 

graphite fibres and Narmco 5208 epoxy resin. 

The graphite fiber-reinforced epoxy matrix 

composite (T300/5208) was chosen for 

numerical calculations with the following 

material properties.  

-6 -3
2

2

-6 2 -7 2

=31.3×10 cm/cm×K, = 2.68×10 cm/cm×K wt %H O,

= 64.30GPa, = 0.33, = 0.216 cm /s, =1.55%dry wt,

= 6.90×10 cm /hr, = 6.90×10 cm /hr,

t t

h m

E C

D D

 

  

          

(44) 

The physical parameters as 

3
( )

3 o o

293.16K, 373.16K, 293.16K,

0.0%dry wt, 1.55%dry wt, 0.0%dry wt,

0.7, 0 1.0, 0.122kg/m K ,

2.053m K / kg, 90 , 15 , 70%

i a b

i a b

f g g c

c c c

T T T

C C C

RH

  

  

  

  

  

    
                 

(45) 

and the prescribed surface temperature as 

1

1 2

( ) 2

1, 0

( ), ( ) ( ),

,

a a

f g

f g f

 

     

   

  


  


                                           

(46) 

and  
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( ) ( ) 1b bf g  
                                                     

(47) 

where 

( ) ( ) 1
1 1 [ ]

( ) cos
2 2 2

f g f g

c

f
    




       
      

    

 

and 

1 2,c c c c          

In order to examine the influence of 

hygrothermoelastic response in a composite 

hollow cylinder, numerical calculations were 

performed for all the variables, and numerical 

calculations are depicted in the following figures 

with the help of MATHEMATICA software.   

CONCLUSION : 

The proposed closed-form 
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Figure 1. The geometry of a hollow circular cylinder 

 


